
Prince of Persia

Specifications of

File Formats

Princed Development Team

January 5, 2008

Contents

1 Preamble 3

2 Introduction 3

3 DAT v1.0 Format Specifications 3
3.1 General file specifications . 3

3.1.1 Some definitions . 3
3.1.2 Index structures . 4
3.1.3 Checksums byte . 5

3.2 Images . 5
3.2.1 Headers . 6
3.2.2 Algorithms . 6
3.2.3 Run length encoding (RLE) 7
3.2.4 LZ variant (LZG) . 7

3.3 Palettes . 8
3.4 Levels . 10

3.4.1 Unknown blocks . 11
3.4.2 Room mapping . 11
3.4.3 Wall drawing algorithm 14
3.4.4 Room linking . 15
3.4.5 Guard handling . 16
3.4.6 Start Position . 16
3.4.7 Door events . 17

3.5 Digital Waves . 17
3.6 Midi music . 18
3.7 Internal PC Speaker . 18
3.8 Binary files . 18
3.9 Levels in POP1 for Mac . 18

1

4 DAT v2.0 Format Specifications 19
4.1 General file specifications . 19

4.1.1 The master index . 20
4.1.2 The slave indexes . 21

4.2 Levels . 22
4.2.1 Room mapping . 22
4.2.2 Door events . 24
4.2.3 Guard handling . 24
4.2.4 Static guards . 25
4.2.5 Dynamic guards . 26

5 PLV v1.0 Format Specifications 26
5.1 User data . 27
5.2 Allowed Date format . 27

6 SAV v1.0 Format Specifications 28

7 HOF v1.0 Format Specifications 28

8 Credits 29

9 License 29

2

1 Preamble

This file was written thanks to the hard work on reverse engineering made by
several people, see the credits section. In case you find any mistake in the text
please report it. A copy of this document should be available in our official site
at http://www.princed.org.

2 Introduction

There are two versions of the DAT file format: DAT v1.0 used in POP 1.x and
DAT v2.0 used in POP 2. In this document we will specify DAT v1.0.

DAT files were made to store levels, images, palettes, wave, midi and internal
speaker sounds. Each type has its own format as described below in the following
sections.

As the format is very old and the original game was distributed in disks, it
is normal to think that the file format uses some kind of checksum validation
to detect file corruptions.

DAT files are indexed, this means that there is an index and you can access
each resource through an ID that is unique for the resource inside the file.

Images store their height and width but not their palette, so the palette is
another resource and must be shared by a group of images.

PLV files use the extension defined to support a format with only one level
inside.

Both versions of DAT are supported and may be manipulated by PR. This
program works like an archive manager (i.e. pkzip) and extracts the files in
known formats that may be handled by other programs. For more information
about PR check the Princed home page at http://www.princed.org.

In this document you will also find the SAV and HOF format specifications
and the algorithm used by POP1 to draw the dungeon walls.

3 DAT v1.0 Format Specifications

3.1 General file specifications

All DAT files have an index, this index has one entry per item with information
on each one.

The index is stored at the very end of the file. But may be located reading
the first 6 bytes (as headers) of the file, that are reserved to locate the index
and know it’s size. The sum of the location and the index size should be the
size of the file.

3.1.1 Some definitions

Let’s define the numbers as:

3

SC Signed char: 8 bits, the first bit is for the sign and the 7 last for the number.
If the first bit is a 0, then the number is positive, if not the number is
negative, in that case invert all bits and add 1 to get the positive number.
i.e. -1 is FF (1111 1111), 1 is 01 (0000 0001)
Range: -128 to 127
1 byte

UC Unsigned char: 8 bits that represent the number.
i.e. 32 is 20 (0010 0000)
Range: 0 to 255
1 byte

US Unsigned Short: Little endian, 16 bits, storing two groups of 8 bits ordered
from the less representative to the most representative without sign.
i.e. 65534 is FFFE in hex and is stored FE FF (1111 1110 1111 1111)
Range: 0 to 65535
2 bytes

SS Signed Short: Little endian, 16 bits, storing two groups of 8 bits ordered
from the less representative to the most representative with sign. If the
first byte is 0 then the number is positive, if not the number is negative,
in that case invert all bits and add 1 to get the positive number.
i.e. -2 is FFFE in hex and is stored FE FF (1111 1110 1111 1111)
Range: -32768 to 32767
2 bytes

UL Unsigned long: Little endian, 32 bits, storing four groups of 8 bits each
ordered from the less representative to the most representative without
sign.
i.e. 65538 is 00010002 in hex and is stored 02 00 01 00
(0000 0010 0000 0000 0000 0001 0000 0000)
Range: 0 to 232 − 1
4 bytes

Sizes will always be expressed in bytes unless another unit is specified.

3.1.2 Index structures

Offset Size Type Name Description

0 4 UL IndexOffset The location where the in-

dex begins

4 2 US IndexSize1 The number of bytes the in-

dex has

1IndexOffset + IndexSize = filesize

4

Offset Size Type Name Description

IndexOffset = α IndexSize ↓ F ooter The DAT index

α 2 US NumberOfItems Resources count

α + 2 = β2 NumberOfItems ∗ 8 - Index A list of NumberOfItems

blocks of 8-bytes-length in-

dex record called Entry

β + 8i = γ 8 ↓ Entry The 8-bytes-length index

record (one per item)

γ + 0 2 US Id(i)3 Item ID

γ + 2 4 UL Offset(i)3 Absolute offset where the re-

source start

γ + 6 2 US Size(i)3 Size of the item not includ-

ing the checksum byte

Table 1: DAT file blocks

Note: POP1 doesn’t validate the DAT file checking IndexOffset +
IndexSize = FileSize, this means you can append data at the end of the
file.

PR validates that IndexOffset + IndexSize ≤ FileSize. It also compares
IndexSize with 8 ∗ numberOfItems + 2 to determine if a file is a valid POP1
DAT file.

3.1.3 Checksums byte

There is a checksum byte for each item (resource), this is the first byte of the
item, the rest of the bytes are the item data. The item type is not stored and may
only be determined by reading the data and applying some filters, unfortunately
this method may fail. When you extract an item you should know what kind
of item you are extracting.

If you add (sum) the whole item data including checksum and take the less
representative byte (modulus 256) you will get the sum of the file. This sum
must be FF in hex (255 in UC or -1 in SC). If the sum is not FF, then adjust
the checksum in order to set this value to the sum. The best way to do that
is adding all the bytes in the item data (excluding the checksum) and inverting
all the bits. The resulting byte will be the right checksum.

From now on the specification are special for each data type (that means we
won’t include the checksum byte anymore).

3.2 Images

Images are stored compressed and have a header and a compressed data area.
Each image only one header with 6 bytes in it as follows

2so IndexSize = 8 ∗ numberOfItems + 2
3with 0 ≤ i < numberOfItems

5

3.2.1 Headers

Offset Size Type Name Description

0 6 ↓ ImageHeader The header of an image

0 2 US Height The height of the image in

pixels

2 2 US W idth The width of the image in

pixels

4 2 - ImageMask Information on the compres-

sion algorithm and bitrate

Table 2: Image headers

ImageMask is a set of bits where:

⋄ the first 8 are zeros

⋄ the next 4 are the resolution
so if it is 1011 (B in hex) then the image has 16 colours; and if it is 0000
(0 in hex) then the image has 2 colours. To calculate the bits per pixel
there are in the image, just take the last 2 bits and add 1. e. g. 11 is 4
(24 = 16 colours) and 00 is 1 (21 = 2 colours).

⋄ the last 4 bits are the 5 compression types (from 0 to 4) as specified in
Table 3.

Dec Bin Algorithm
0 0000 RAW LR
1 0001 RLE LR
2 0010 RLE UD
3 0011 LZG LR
4 0100 LZG UD
Table 3: Algorithm codes

The following data in the resource is the image compressed with the algo-
rithm specified by those 4 bits.

3.2.2 Algorithms

RAW LR means that the data has not been compressed in any way, it is used
for small images. The format is saved from left to right (LR) serialising a
line to the next integer byte if necessary. In case the image was 16 colours,
two pixels per byte (4bpp) will be used. In case the image was 2 colours,
8 pixels per byte (1bpp) will be used.

6

RLE LR has a Run length encoding (RLE) algorithm, after uncompressed the
image can be read as a RAW LR.

RLE UD is the same as RLE LR except that after uncompressed the bytes in
the image must be drawn from up to down and then from left to right.

LZG LR has some kind of variant of the LZ77 algorithm (the sliding windows
algorithm), here we named it LZG in honour of Lance Groody, the original
coder. After decompressed it may be handled as RAW LR.

LZG UD Uses LZG compression but is drawn from top to bottom as RLE UD.

3.2.3 Run length encoding (RLE)

The first byte is always a control byte, the format is SC. If the control byte is
negative, then the next byte must be repeated n times as the bit inverted control
byte says, after the next byte (the one that was repeated) another control byte
is stored.
If the control byte is positive or zero just copy textual the next n bytes where
n is the control byte plus one. After that, the next byte is the following control
byte.
If you reach a control byte but the image size is passed, then you have completed
the image.

3.2.4 LZ variant (LZG)

This is a simplified algorithm explanation:
Definition: “print” means to commit a byte into the current location of the

output stream.

The output stream is a slide window initialised with zeros.

The first byte of the input stream is a maskbyte.

For each of the 8 bits in the maskbyte the next actions must be performed:

If the bit is 1 print the next unread byte to the slide window

If the bit is a zero read the next two bytes as control bytes with

the following format (RRRRRRSS SSSSSSSS):

· 6 bits for the copy size number (R). Add 3 to this number.

Range: 2 to 26 + 2 = 66

· 10 bits for the slide position (S). Add 66 to this number.

Range: 26 + 2 = 66 to 26 + 2 + 210 = 1090

Then print in the slide window the next R bytes that are the same slide

window starting with the Sth byte.

After all the maskbyte is read and processed, the following input byte is another
maskbyte. Use the same procedure to finish decompressing the file. Remaining
unused maskbits should be zeros to validate the file.

7

This is the modus operandi of the compression algorithm
For each input byte we take a window containing the 1023 previous bytes.

If the window goes out of bounds (ie, when the current input byte is before
position 210 = 1024), we consider it filled with zeros.

Figure 1: Distribution of the sindow size.

The algorithm works as follows:

While there is unread input data:

Create a maskbyte.

For each bit in the maskbyte (and there is still unread input data):

Compare the following input bytes with the bytes in the window,

and search the longest pattern that is equal to the next bytes.

If we found a pattern of length n > 2:

Assign 0 to the current bit of the maskbyte.

In the next 2 bytes of the output, specify the relative

position and length of the pattern.

Advance output pointer by 2.

Advance input pointer by n.

Else:

Assign 1 to the current bit of the maskbyte.

Copy the current input byte in the next output byte.

Advance output pointer by 1.

Advance input pointer by 1.

For a better understanding of the algorithm we strongly recommend to read
the PR source files lzg uncompress.c and lzg compress.c that may be located at
https://gforge.lug.fi.uba.ar/plugins/scmcvs/cvsweb.php/PR/src/lib/compression/?cvsroot=freeprince in the PR
repository module.

3.3 Palettes

Palette resources store a palette for the VGA and patterns for the CGA and
EGA. Each palette resource is sized 100 bytes distributed as explained in Ta-
ble 25:

Length Offset Block Name

8

4 0 unknown (TGA?)
48 4 vga palette
16 52 cga patterns
32 68 ega patterns
Table 4: DAT 1.0 Palette blocks

The vga palette block stores 16 records of three bytes each that is the palette
in the RGB-18-bits format (6 bits for each colour). Each colour is a number
from 0 to 63. Remember to shift the colour bytes by two to get the colour
number from 0 to 256. The format is 00rrrrrr 00gggggg 00bbbbbb where rrrrrr
is the 6 bit red, gggggg the 6 bits green and bbbbbb the 6 bits blue.

In the case of EGA and CGA, palettes are not stored. The palettes are
the standard ones defined by the adapter. In Table 5 the standard palettes are
shown.

EGA CGA1 CGA2 Color name HTML rgbRGB
0 0 0 black #000000 000000
1 - - blue #0000aa 000001
2 - 1 green #00aa00 000010
3 1 - cyan #00aaaa 000011
4 - 2 red #aa0000 000100
5 2 - magenta #aa00aa 000101
6 - 3 brown #aa5500 010100
7 3 - light gray #aaaaaa 000111
8 - - dark gray #555555 111000
9 - - bright blue #5555ff 111001
10 - - bright green #55ff55 111010
11 - - bright cyan #55ffff 111011
12 - - bright red #ff5555 111100
13 - - bright magenta #ff55ff 111101
14 - - bright yellow #ffff55 111110
15 - - bright white #ffffff 111111

Table 5: EGA and CGA palettes

Where EGA is the only one palette used in EGA mode of the game and
CGA1 and CGA2 are the two palettes used in the CGA mode. As the palettes
are always the same, but the graphics are in 16 colours, some patterns are used
instead of colours. Remember EGA has 16 colours, so is represented in 4 bits
and CGA has 4 simultaneous colours represented in 2 bits.

The cga patterns block stores 16 records of one byte each, separated in four
parts, so the format is a0a1b0b1c0c1d0d1 where aa is a two bit colour in one of
the two CGA palettes (palette 1 is normally used in the dungeon environment
and 2 in the palace environment).

9

The pattern is arranged in a 2x2 box and each pixel is denoted:

a0a1 b0b1

c0c1 d0d1

So for example if the entry 1 is 00101000 (0x28) in mode CGA2, the pattern
will be a checkerboard of black and green like the following:

Bin Dec Colour
00 01 0 1 black green
01 00 1 0 green black

The ega patterns block stores 16 records of two bytes each, this time sep-
arated in two parts. So we have again, four parts per record in the format
aaaabbbb ccccdddd.

Now, using the EGA entries 0-15 (the four bits are represented) the same
patterns as the CGA may be used.

For example, with 00101111 11110010 (0x2ff2) you can create the following
pattern:

Bin Dec Hex Colour
0010 1111 2 15 2 f brown white
1111 0010 15 2 f 2 white brown

3.4 Levels

This table has a summary of the blocks to be used in this section, you can refer
it from the text below.

Length Offset Block Name

720 0 pop1 foretable
720 720 pop1 backtable
256 1440 door I
256 1696 door II
96 1952 links
64 2048 unknown I
3 2112 start position
3 2115 unknown II
1 2116 unknown III
24 2119 guard location
24 2143 guard direction
24 2167 unknown IV (a)
24 2191 unknown IV (b)
24 2215 guard skill
24 2239 unknown IV (c)
24 2263 guard colour
16 2287 unknown IV (d)
2 2303 0F 09 (2319)
Table 6: DAT 1.0 Level blocks

10

All levels have a size of 2305, except in the original game, that the potion
level has a size of 2304 (may be it was wrong trimmed).

3.4.1 Unknown blocks

Blocks described in this section are: Unknown from I to IV.
Unknown III and IV blocks does not affect the level if changed, if you find

out what they are used to we will welcome your specification text.
Unknown I may corrupt the level if edited.
We believe unknown II has something to do with the start position, but we

do not know about it.
As unknown II were all zeros for each level in the original set, it was a team

decision to use those bytes for format extension. If one of them is not the default
00 00 00 hex then the level was extended by the team. Those extensions are
only supported by RoomShaker at this moment. To see how those extensions
were defined read the appendix I will write some day. For the moment you may
contact us if you need to know that.

3.4.2 Room mapping

This section explains how the main walls and objects are stored. The blocks
involved here are “pop1 foretable” and “pop1 backtable”

In a level you can store a maximum of 24 rooms (also called screens) of 30
tiles each, having three stages of 10 tiles each. Screens are numbered from 1 to
24 (not 0 to 23) because the 0 was reserved for special cases.

The pop1 foretable and pop1 backtable blocks have 24 sub-blocks inside.
Those sub-blocks have a size of 30 bytes each and has a room associated. So,
for example, the sub-block staring in 0 corresponds to the room 1 and the
sub-block starting in 690 corresponds to the room 24. It is reserved 1 byte
from the pop1 foretable block and one from the pop1 backtable block for each
tile. To locate the appropriate tile you have to do the following calculation:
tile = (room − 1) ∗ 30 + tileOffset where tileOffset is a number from 0 to 29
that means a tile from 0 to 9 if in the upper stage, from 10 to 19 if in the middle
stage and 20 to 29 if in the bottom stage. We define this as the location format
and will be used also in the start position. Always looking from the left to the
right. So there is a pop1 foretable and pop1 backtable byte for each tile in the
level and this is stored this way.

The pop1 foretable part of the tile stores the main tile form according to the
table below. Note that those are just a limited number of tiles, each code has a
tile in the game. The tiles listed are all the ones needed to make a level so the
missing tiles have an equivalent in this list.

Each tile has a code id, as some codes are repeated this is how you have to
calculate the codes. A tile in the pop1 foretable part has 8 bits in this format
rrmccccc, where rr are random bits and can be ignored. m is a modifier of the
tile. For example modified loose floors do not fall down. The rest ccccc is the

11

code of the tile tabled below. Tile names are the same as the ones used by
RoomShaker to keep compatibility.

Hex Binary Group Description
0x00 00000 free Empty
0x01 00001 free Floor
0x02 00010 spike Spikes
0x03 00011 none Pillar
0x04 00100 gate Gate
0x05 00101 none Stuck Button
0x06 00110 event Drop Button
0x07 00111 tapest Tapestry
0x08 01000 none Bottom Big-pillar
0x09 01001 none Top Big-pillar
0x0A 01010 potion Potion
0x0B 01011 none Loose Board
0x0C 01100 ttop Tapestry Top
0x0D 01101 none Mirror
0x0E 01110 none Debris
0x0F 01111 event Raise Button
0x10 10000 none Exit Left
0x11 10001 none Exit Right
0x12 10010 chomp Chopper
0x13 10011 none Torch
0x14 10100 wall Wall
0x15 10101 none Skeleton
0x16 10110 none Sword
0x17 10111 none Balcony Left
0x18 11000 none Balcony Right
0x19 11001 none Lattice Pillar
0x1A 11010 none Lattice Support
0x1B 11011 none Small Lattice
0x1C 11100 none Lattice Left
0x1D 11101 none Lattice Right
0x1E 11110 none Torch with Debris
0x1F 11111 none Null

Table 7: POP1 Foretable codes

The pop1 backtable part of the tile stores a modifier or attribute of the
pop1 foretable part of the tile. This works independently of the modifier bit
in the code. The tile modifier depends on the group the tile belongs which are
wall, chomp, event, ttop, potion, tapp, gate, spike and free. The group event
allows the 256 modifiers and will be described in Section 4.2.2.

In the original game all elements are allowed in all levels, but it is possible
to set it up Hex-editing the uncompressed version. To do that, read the Hex

12

editing documentation.

Group Code Description
none 0x00 This value is used always for this group
free 0x00 Nothing1, Blue line2

free 0x01 Spot11, No blue line2

free 0x03 Window
free 0xFF Spot31, Blue line?2

spike 0x00 Normal (allows animation)
spike 0x01 Barely Out
spike 0x02 Half Out
spike 0x03 Fully Out
spike 0x04 Fully Out
spike 0x05 Out?
spike 0x06 Out?
spike 0x07 Half Out?
spike 0x08 Barely Out?
spike 0x09 Disabled
gate 0x00 Closed
gate 0x01 Open

tapest 0x00 With Lattice2

tapest 0x01 Alternative Design2

tapest 0x02 Normal2

tapest 0x03 Black2

potion 0x00 Empty
potion 0x01 Health point
potion 0x02 Life
potion 0x03 Feather Fall
potion 0x04 Invert
potion 0x05 Poison
potion 0x06 Open
ttop 0x00 With lattice2

ttop 0x01 Alternative design2

ttop 0x02 Normal2

ttop 0x03 Black2

ttop 0x04 Black2

ttop 0x05 With alternative design and bottom2

ttop 0x06 With bottom2

ttop 0x07 With window2

chomp 0x00 Normal
chomp 0x01 Half Open
chomp 0x02 Closed
chomp 0x03 Partially Open
chomp 0x04 Extra Open

1Dungeon environment
2Dungeon environment

13

Group Code Description
chomp 0x05 Stuck Open

Table 8: Background modifiers by group

Note: Some modifiers have not been tested, there
may be any other unknown tile type we have not
still discover.

3.4.3 Wall drawing algorithm

This section does not have a direct relation with the format because it describes
how the walls must be drawn on the room. However, as this information should
be useful to recreate a cloned room read from the format we decided to include
this section to the document.

Wall drawing depends on what is in the right panel. If the right panel is not
a wall (binary code ends in 10100) a base wall will be drawn and other random
seed will be used. If the right panel is a wall then the main base wall will be
drawn and the described seed will be used.

When the base wall is drawn, the modifiers should be blitted over it. There
are 53 different types of walls using the same base image. We will call the seed
array to the one having the modifier information of those 53 panels. This array
has indexes from 1 to 53 included.

To calculate what value take from the array this calculation must be per-
formed: panelInfo = seedArray[roomNumber + wallPosition] where pan-
elInfo is the result modifier information that will be applied to the base image;
seedArray is this array that will be described above as a table; roomNumber
is the number of the room the wall is (from 1 to 24) and wallPosition is the
position the wall is (from 0 to 29), using the location format specified in section
3.4.2. This means the first value is 1 (roomNumber=1 and wallPosition=0) and
the last is 53 (roomNumber=24 and wallPosition=29).

Modifiers affects the corners of a stone. There are three stone rows per wall.
If the modifier is activated this corner will appear different (seems to be darker).
Another modifier is the grey stone.

Modifier Seed Positions
(First row)

Grey stone 2, 5, 14, 17, 26, 32, 35, 50
Left, bottom 2, 11, 36, 45
Left, top 37
Right, bottom 27, 33
Right, up 4, 10, 31, 37

(Second row)
Grey stone none
Left, bottom 34, 47

14

Modifier Seed Positions
Left, top 9, 10
Right, bottom 2, 8, 25, 35
Right, top 6, 12, 23, 29, 39

(Third row)
Grey stone none
Left, bottom none
Left, top 16
Right, bottom none
Right, top none
Table 9: Stone modifiers on seed position

Another modifiers are saved in the seed too. Those modifiers are not boolean
values, they are offsets and sizes. As each stone has a different size the stone
separation offset is saved in the seed.

For the first row, the stones are all the same size and the seed is not needed.
For the second row we have got the first 20 values, ordered from 1 to 20.

Field Values
position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

offsets 5 4 3 3 1 5 4 2 1 1 5 3 2 1 5 4 3 2 5 4
separator size 0 1 1 0 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0

Table 10: First 20 seed values of the second row separator

We will be adding the next values as soon as we count the pixels ;) This
information can be found in walls.conf file from FreePrince.

3.4.4 Room linking

This section describes the links block.
Each room is linked to another by each of the four sides. Each link is stored.

There is no room mapping, just room linking.
The links block has 24 sub-blocks of 4 bytes each. All those sub-blocks has

its own correspondence with a room (the block starting at 0 is related to the
room 1 and the block starting at with 92 is related to room 24). Each block of
4 bytes stores the links this room links to reserving one byte per each side in
the order left (0), right (1), up (2), down (3). The number 0 is used when there
is no room there. Cross links should be made to allow the kid passing from a
room to another and then coming back to the same room but it is not a must.

15

3.4.5 Guard handling

This section specifies the blocks: guard location, guard direction, guard skill
and guard colour.

Each guard section has 24 bytes, each byte of them corresponds to a room
so byte 0 is related to room 1 and byte 23 is related to room 24. This room is
where the guard is located. The format only allows one guard per room. Each
block describes a property or attribute of the guard.

The guard location part of a guard describes where in the room the guard
is located, this is a number from 0 to 29 if the guard is in the room or 30 if
there is no guard in this room. Other values are allowed but are equivalent to
30. The number from 0 to 29 is in the location format specified in Section 3.4.2.

The guard direction part describes where the guard looks at. If the value is
0, then the guard looks to the right, if the value is the hex FF (-1 or 255) then
he looks left. This is the direction format, and will be used in the start position
too.

The guard skill is how the guard fights, style and hit points. Note that the
hit points also depends on the level you are. Allowed numbers are from 0 to 9.

The guard colour is the palette the guard has (see Section 3.8). The default
colours are in this table:

Code Pants Cape
0x00 Light Blue Pink
0x01 Red Purple
0x02 Orange Yellow
0x03 Green Yellow
0x04 Dark Blue Beige
0x05 Purple Beige
0x06 Yellow Orange
Table 11: Default Guard colours

Other codes may generate random colours because the game is reading the
palette from trashed memory. This may also cause a game crash. It is possible
to add new colours in the guard palette resource (see Section 3.8) avoiding the
crash.

3.4.6 Start Position

This section describes the start position block.
This block stores where and how the kid starts in the level. Note that all

level doors that are on the starting room will be closed in the moment the level
starts.

16

This block has 3 bytes. The first byte is the room, allowed values are from
1 to 24. The second byte is the location, see the section 3.4.2 for the location
format specifications. The third byte is the direction, see 3.4.5 for the direction
format specifications.

3.4.7 Door events

This section explains how the doors are handled and specifies the blocks door I
and II.

First of all he have to define what an event line is in this file. An event line
is a link to a door that will be activated. If the event was triggered with the
action close, then the event will close the door, if the action was open then the
event will open the door. An event line has also a flag to trigger the next event
line or not. An event is defined as a list of event lines, from the first to the
last. The last must have the trigger-next-event-line flag off. This is like a list of
doors that performs an action. An event performs the action that it was called
to do: open those doors or close them. This action is defined by the type of tile
pressed. Each event line has an ID from 0 to 255. An event has the ID of the
first event line in it.

In section 3.4.2 it is explained how a door trigger is associated to an event
ID. Those are the tiles that starts the event depending on what are them: closers
or openers.

How events are stored: Each door block has 256 bytes, one per event line.
Each event line is located in an offset that is the event line ID, so event line 30
is located in the byte 30 of each block. There is a door I part of an event line
and a door II part of it. We will define them as byte I and byte II. You can find
there: the door room, the door location, and the trigger-next flag. The format
is the following:

Let’s define Screen S = s1s2s3s4s5 as a 5-bit-number from 1 to 24 (5 bits)
where sn is the bit n of the binary representation and whose value represents
the screen number; Location L = l1l2l3l4l5 as another 5-bit-number from 0 to
29 where ln is the bit n of the binary representation whose value is according
to the location format specifications (See Section 3.4.5) ; Trigger-next T = t1
as one bit having 1 for “off” or a 0 for “on”.

Byte I has the form: t1s4s5l1l2l3l4l5
Byte II has the form: s1s2s300000

3.5 Digital Waves

Read them as raw digital wave sound using the following specifications:

Field Value
Size of Format 16

Format PCM

17

Field Value
Attributes 8 bit, mono, unsigned
Channels 1

Sample rate 11025
Bytes/Second 11025

Block Align 1
Table 12: Wave Specifications

GNU/Linux users can play the raw waves just dropping them inside /dev/dsp
As DAT headers are very small it is valid to type in a shell console with dsp
write access: cat digisnd?.dat>/dev/dsp to play the whole wave files.

3.6 Midi music

Standard MIDI files. There have been reports that some versions of MIDI did
not work, but we believe this can bi fixed saving in other MIDI format variant
(like type 0).

3.7 Internal PC Speaker

Offset Size Type Name Description

0 3 ↓ Header The file header
0 2 UC Junk 0x00 (or 0x80 sometimes)
2 1 US bps Beats per two seconds
0 3numberOfNotes ↓ Body The file body
3i 2 US Freq frequency in hertz (0 if no

sound, 1 or 2 if marker)
3i + 2 1 US length length in beats

0 2 ↓ Footer The file footer
0 2 - Junk 0x12 0x00

Table 13: DAT file blocks

3.8 Binary files

Some binary files contains relevant information The resource number 10 in
prince.dat has the VGA guard palettes in it saving n records of a 16-colour-
palette of 3 bytes in the specified palette format.

3.9 Levels in POP1 for Mac

In the case of Mac, executable and resource data are embedded in the one run-
time file. Level data is a part of resources, for examples graphics, icons and
sounds. Level blocks are very similar to PC but not exactly identical. Following

18

table has a summary of the blocks of DAT 1.0 for Mac.

Length Offset Block Name

720 0 pop1 foretable
720 720 pop1 backtable
256 1440 door I
256 1696 door II
96 1952 links
64 2048 unknown I
3 2112 start position
21 2115 unknown II+III
24 2136 guard location
24 2160 guard direction
24 2184 unknown IV (a)
24 2208 unknown IV (b)
24 2232 guard skill
24 2256 unknown IV (c)
24 2280 guard colour
4 2304 unknown IV (d)

Table 14: DAT 1.0 Level blocks for Mac

All levels have a size of 2308. Also there are two different things in com-
parison with DAT 1.0 for PC. DAT 1.0 for Mac does not have any index and
checksums. 16 levels including demo and potion level are only chained in se-
quence. See 3.4 for reference on each block.

4 DAT v2.0 Format Specifications

4.1 General file specifications

POP2 DAT files are not much different from their POP1 predecessors. The
format is similar in almost each way. The main difference is in the index. As
DAT v1.0 used an index in the high data, the DAT v2.0 indexes are two level
encapsulated inside a high data. So there is an index of indexes.

We will use the same conventions than in the prior chapter. The checksum
validations are still the same.

Offset Size Type Name Description

0 6 ↓ Header The file header
0 4 UL HighDataOffset The location where the

highData begins
4 2 US HighDataSize the number of bytes the

highData has
Table 15: High data structures

19

This is similar to DAT v1.0 format, except that the index area is now called
high data.

The high data part of the file contains multiple encapsulated indexes. Each
of those index is indexed in a high data index of indexes. We will call this index
the master index and the sub index the slave indexes. Slave indexes are the real
file contents index.

4.1.1 The master index

Offset Size Type Name Description

0 4 UL IndexOffset The location where the in-

dex begins

4 2 US IndexSize1 The number of bytes the in-

dex has

IndexOffset = α IndexSize ↓ F ooter The DAT index

α 2 US NumberOfItems Resources count

α + 2 = β2 NumberOfItems ∗ 8 - Index A list of NumberOfItems

blocks of 8-bytes-length in-

dex record called Entry

β + 8i = γ 8 ↓ Entry The 8-bytes-length index

record (one per item)

γ + 0 2 US Id(i)3 Item ID

γ + 2 4 UL Offset(i)3 Absolute offset where the re-

source start

γ + 6 2 US Size(i)3 Size of the item not includ-

ing the checksum byte

Table 16: DAT 2.0 Master index

Note: POP1 doesn’t validate the DAT file checking IndexOffset +
IndexSize = FileSize, this means you can append data at the end of the
file.

The master index is made with: - Offset HighDataOffset, size 2, type US:
NumberOfSlaveIndexes (the number of the high data sections) - Offset HighDataOffset+
2, size NumberOfSlaveIndexes ∗ 6: The master index record (a list of Num-
berOfSlaveIndexes blocks of 6-bytes-length index record each corresponding to
one slave index)

The 6-bytes-length index record (one per item): Size = 6 bytes - Rela-
tive offset 0, size 4, type sting: 4 ASCII bytes string denoting the Slave In-
dex ID. The character order is inverted. - Relative offset 4, size 2, type US:
SlaveIndexOffset (slave index offset relative to HighDataOffset)

1IndexOffset + IndexSize = filesize
2so IndexSize = 8 ∗ numberOfItems + 2
3with 0 ≤ i < numberOfItems

20

From the end of the DAT High Data Master Index to the end of the file
we will find the High Data section contents (where the HighDataOffset relative
offsets points to). This content has a set of second indexes each called Slave
Index. So, to find a Slave Index offset you have to add the file HighDataOffset
to the SlaveIndexOffset for the desired index.

There are different 4-byte-length ASCII strings called Slave Index IDs. When
the string is less than 4 bytes, a tailing byte 0x00 is used. We will denote it
with the null-space symbol “ ”. The character order is inverted, so for example
the text SLAP becomes PALS, MARF becomes FRAM, becomes empty or
RCS becomes SCR. They must be in upper case.

ID Stored Description
“cust” TSUC Custom
“font” TNOF Fonts
“fram” MARF Frames
“palc” CLAP CGA Palette
“pals” SLAP SVGA Palette
“palt” TLAP TGA Palette
“piec” CEIP Pieces
“psl” LSP ?
“scr” RCS Screens (images that have the full room)

“shap” PAHS Shapes (normal graphics)
“shpl” LPHS Shape palettes
“strl” LRTS Text
“snd” DNS Sound
“seqs” SQES Midi sequences
“txt4” 4TXT Text

“” Levels
Table 17: Slave Index ID strings

4.1.2 The slave indexes

All encapsulated sections pointed by the Master Index are Slave Indexes. The
slave index is specified with: - Offset SlaveIndexOffset, size 2, type US: Num-
berOfItems (the number of the records referring to the file data) - Offset SlaveIn-
dexOffset+2, size NumberOfItems*11: The slave index record (a list of Num-
berOfItems blocks of 11-byte-length index record each corresponding to one
slave index)

The 11-byte-length slave index record (one per item): Size = 11 bytes -
Relative offset 0, size 2, type US: Item ID - Relative offset 2, size 4, type UL:
Resource start (absolute offset in file) - Relative offset 6, size 2, type US: Size
of the item (not including the checksum byte) - Relative offset 8, size 3, type
binary: A flags mask (in “shap” indexes it is always 0x40 0x00 0x00; in others
0x00 0x00 0x00)

Finally, we can locate whatever item we want if we have the - Slave Index

21

ID - Item ID this is not a unique key, unfortunately we have found repeated
pairs of IDs for different items, so we have to use the “order” as a third key.

So, the way to find an item is: first read the High Data Offset, go there, read
the number of slave items, iterate the master index to find the desired slave item
comparing it with the Slave Index ID. Then go to the found Slave Index offset
(remember to add the High Data Offset) and read the number of items for this
index. Finally iterate the slave index to find the desired item comparing the
Item ID and read the offset and size. Now you will have the offset of the desired
item’s checksum, increasing the offset by one will give you the beginning of the
item content.

4.2 Levels

This table has a summary of the blocks to be used in this section.

Length Offset Block Name

960 0 pop2 foretable
3840 960 pop2 backtable
1280 4800 pop2 doors
128 6080 links (as explained in Section 3.4.4 but having 32 rooms)
32 6208 unknown I
3 6240 start position (as explained in Section 3.4.6)
4 6243 unknown II (00 01 00 02) (check pop1)

3712 6247 pop2 static guard
1088 9959 pop2 dynamic guard
978 11047 unknown III

Table 18: DAT 2.0 Level blocks

All levels have a size of 12025.

4.2.1 Room mapping

You should read section 3.4.2 before reading this one. A POP2 level can store
a maximum of 32 rooms of 30 tiles each, having three stages of 10 tiles each.
Rooms are numbered from 1 to 32 (not 0 to 31) because the 0 is be reserved to
the null-room.

The pop2 foretable block has 32 sub-blocks inside. Each sub-block has a size
of 30 bytes and has a room associated. For each byte in this room there is a
tile in the game. Each byte has a code to represent a tile. There are additional
attributes to this tile also.

To locate the 7th tile in the bottom floor of the room 27 you have to do the
same calculation as in 3.4.2: tile = (room − 1) ∗ 30 + tileOffset = (27 − 1) ∗
30 + 2 ∗ 10 + 7 = 807

Dec Hex Bin Caverns Ruins Temple
00 0x00 000000 Empty Empty Empty

22

Dec Hex Bin Caverns Ruins Temple
01 0x01 000001 Floor Floor Floor
02 0x02 000010 Spikes (?) Spikes
03 0x03 000011 Pillar Pillar Pillar
04 0x04 000100 Door Gate Gate
05 0x05 000101 (?) Raised Button Raised Button
06 0x06 000110 (?) Drop Button Drop Button
07 0x07 000111 (?) Tunnel (?)
08 0x08 001000 Bottom Big Pillar Bottom Big Pillar Bottom Big Pillar
09 0x09 001001 Top Big Pillar Top Big Pillar Top Big Pillar
10 0x0A 001010 Potion Potion Potion
11 0x0B 001011 Loose Floor Loose Floor Loose Floor
12 0x0C 001100 (?) Slicer Left Half Slicer Left Half
13 0x0D 001101 (?) Slicer Right Half Slicer Right Half
14 0x0E 001110 Debris Debris Debris
15 0x0F 001111 (?) Drop Floor (?)
16 0x10 010000 Exit Half Left Exit Half Left Exit Half Left
17 0x11 010001 Exit Half Right Exit Half Right Exit Half Right
18 0x12 010010 Magic Carpet (?) (?)
19 0x13 010011 Torch (?) Torch
20 0x14 010100 Wall Wall Wall
21 0x15 010101 (?) Skeleton (?)
22 0x16 010110 (?) Sword (?)
23 0x17 010111 Lava Pit Left (?) (?)
24 0x18 011000 Lava Pit Right (?) (?)
25 0x19 011001 (?) (?) Squash Wall
26 0x1A 011010 (?) (?) Flip Tile
27 0x1B 011011 (?) (?) (?)
28 0x1C 011100 (?) (?) (?)
29 0x1D 011101 (?) (?) (?)
30 0x1E 011110 (?) (?) (?)
31 0x1F 011111 (?) (?) (?)
32 0x20 100000 Torch w/Debris (?) Torch w/Debris
33 0x21 100001 Exit Door Top Left (?) (?)
34 0x22 100010 Pressure Plate (?) (?)
35 0x23 100011 Exit Door Top Right (?) (?)
36 0x24 100100 Dart Gun (?) (?)
37 0x25 100101 (?) (?) (?)
38 0x26 100110 (?) (?) (?)
39 0x27 100111 (?) (?) (?)
40 0x28 101000 (?) (?) (?)
41 0x29 101001 (?) (?) (?)
42 0x2A 101010 (?) (?) (?)
43 0x2B 101011 (?) (?) Blue Flame
44 0x2C 101100 Rope Bridge (?) (?)
45 0x2D 101101 (?) (?) (?)

23

Dec Hex Bin Caverns Ruins Temple
46 0x2E 101110 (?) (?) (?)
47 0x2F 101111 (?) (?) (?)

Table 19: POP2 Foretable Codes

The pop2 backtable is an expansion if the pop1 backtable and it is sized 4
times bigger. For each tile there are 4 additional bytes in the pop2 backtable
block to specify further actions or attributes. This block is sized 4 bytes

tile
∗10 tiles

floor
∗

3 floors
room

∗ 32rooms that is 3840bytes. We call background mask to each block of
4 bytes associated to a tile. To locate a background mask you have to do the
following operation: 960+(room−1)∗30∗4+ tileOffset∗4 Background masks
are stored consecutively each after another until the 960 tiles are specified.

The first byte is an unsigned char (UC) association to one of the 256 door
event registers (see Section 4.2.2) if the tile is an activator. In any other case
this byte is an extra attribute information byte. For example in wall (0x14)
having this byte in 0x04 means the wall is curved.

The second byte in a background mask is the attribute byte. For example
0x18 modifies the tile 0x01 and adds two small stalactites.

We believe the special images uses the 3rd or 4th byte.

4.2.2 Door events

This section explains how doors are handled and specifies the block pop2 door.
The pop2 door block has 1280 bytes. It is divided in 256 registers of 5 bytes

called door events. Like POP1 events have associations to doors and activate
them. In POP2 events can also activate a floor shooter.

An event is triggered when an activator button (0x22) is pressed. As it is
specified in the Section 4.2.1, the first byte of the attribute mask belonging to a
button tile points it to a door event that is triggered when the button is pressed.
There is a maximum of 256 events because of the unsigned char of the first byte
if the attribute mask in the pop2 backtable block and the 256 registers in the
pop2 door block.

Each event register is of the form “LL SS TT FD FD” which activates the
normal door (0x04), right exit door (0x11) or shooter (0x24) located in the tile
LL of the screen SS. TT is 00 for normal activation and FF for exit doors.

4.2.3 Guard handling

This section explains how guards are handled. In POP2 there are two different
types of guards. We will call them static and dynamic guards. Static guards are
the normal guards that are waiting in a room like in POP1. In the other hand,
dynamic guards are the ones who appear in the room running from one of the
sides. Each type of guard is attached to a room and is handled in a different
way, so a room can have both types of guards, one or none depending on the
specifications. There is a block for each type of guard, pop2 static guard is the

24

specification of the static guards and pop2 dynamic guard is the specification
of the dynamic ones. Each block has different specifications and sizes as it is
mentioned bellow.

4.2.4 Static guards

In this item static guards are explained and the pop2 static guard is specified.
For each screen there is reserved memory space for a maximum of 5 guards.
The pop2 static guard block has a size of 3712 divided in 32 sub-blocks of

116 bytes each. As there is a correspondence between each sub-block and the
room with this number, we will call them “room guard blocks”.

Offset Size Type Name Description

0 6 ↓ Header The file header
0 4 UL HighDataOffset The location where the

highData begins
4 2 US HighDataSize the number of bytes the

highData has
Table 20: High data structures

A room guard block has a size of 116 divided this way:

⋄ 1 byte for the number of guards present in this room. This byte may take
values from 0 to 5.

⋄ 5 block divisions of 23 bytes for each guard. The first divisions have the
guard information, if the number is less than 5, then the latest divisions
corresponding to the missing guards will be filled with zeros or garbage.

If there is a static guard corresponding to this division of 23 bytes, the
following bytes from 0 to 22 will specify the guard:

Byte 0 is a UC showing the location in this room (same as explained in
3.4.5) of the current guard. Bytes 1 and 2 are a SS with an offset in pixels
to reallocate the guard in the floor. Byte 3 is the facing direction as specified
in 3.4.5. Byte 4 is the skill Byte 5 is unknown Bytes 6,7 and 8 are always 0,
probably because 5 is a long from 0 to 255. Byte 9 is the guard colour in levels
where it is needed (0-3), ie. 1 white+blue, 2 white+black, 3 red. Byte 10 is the
guard number (0 for the first one, 1 for the second, etc). Bytes 11,12,13 and 14
are unknown, mostly 0, but in 10 guards it is 0x52756e2d. Byte 15 is the type
(0-8 and 84), but does not apply in all levels, ie. 5 head, 8 snake. Byte 16 is
the hit points of the guard (0 to 8). Bytes 17 and 18 are the activate triggers
for skeletons, byte 17 is (0,1,-1) and 18 is (0,-1). Normal value is 0x0000 for a
sleeping skeleton. When set to -1 (0xffff) a trigger will be waiting to wake the
skeleton up, for example the exit door open. Other possible values are 0x0100
that is the skeleton already awake and 0xff00 that seems to be similar than
0x0000. Bytes 19,20,21 are always 0. Byte 22 is unknown (mostly 0, but 1 and
3 where found for some guards).

25

4.2.5 Dynamic guards

The dynamic guards are the ones who appear running throw a room’s corner
and they are defined in the pop2 dynamic guard block. This block has 34 bytes
for each of the 32 rooms, so it is sized 1088 bytes. Each room has a specification
about those guards. There is only one different type of dynamic guard per room,
but it is possible to set the number of guards that will appear running.

Offset Size Type Name Description

0 6 ↓ Header The file header
0 4 UL HighDataOffset The location where the

highData begins
4 2 US HighDataSize the number of bytes the

highData has
Table 21: High data structures

A room guard block has a size of 116 divided this way:
The bytes are from 0 to 33: Bytes from 8 to 17 may take the value 0x5a and

0. Bytes 8,9,10,15,16 are always 0. Byte 18 activates dynamic guard. 1 is true
and 0 is false. Byte 19 is the skill (0-7, 8 to make it passive) Bytes 20, 21 and
22 are always 0. Byte 23 is the dynamic guard mode: 0 or 1 to make the guard
wait until all guards are dead to spawn and 2 to spawn even when the prior
guard is still alive. Byte 24 is the floor the guard will appear on. 0 is the upper
one and 2 is the lower. Another number will kill the guard playing the sound.
Byte 25 is the initial location of the guard. ie. 0 is the left side of the screen, 9
is the right side, it is possible to locate them in the middle of the screen, they
will magically spawn in a position between 1 and 8. As they will run to the
center of the screen, this byte also sets the facing direction up (0 to 5 is right, 6
to 9 is left). Byte 26 is the time in ticks the first guard will wait to spawn. Byte
27 is the time in ticks between guards spawn. Bytes 28 and 29 are unknown.
Byte 30 is the number of guards that will appear, there is a maximum of 5 per
room, including static guards. Byte 31 is the hit points the guards will have.

5 PLV v1.0 Format Specifications

PLV v1.0 files are defined in this table:

Size Offset Description Type Content

7 0 Magic identifier text “POP LVL”
1 7 POP version UC 0x01
1 8 PLV version UC 0x01
1 9 Level Number UC
4 10 Number of fields UL
4 14 Block 1: Level size (B1) UL 2306/2305

B1 18 Block 1: Level code -

26

Size Offset Description Type Content
4 18 + B1 Block 2: User data size (B2) UL

B2 22 + B1 Block 2: User data -
Table 22: PLV blocks

Level code is the exact level as described in Section 3.4 including the check-
sum byte. Note that Level size (B1) also includes the checksum byte in the
count. POP version is 1 for POP1 and 2 for POP2. PLV version is 1 for PLV
v1.0. Only one level may be saved in a PLV, the level number is saved inside.

5.1 User data

User data is a block of extensible information, Number of fields is the count of
each field/value information pair. A pair is saved in the following format:

field_name\\0value\\0

where \0 is the null byte (0x00) and field name and value are strings.
There are mandatory pairs that must be included in all PLV files. Those

are:

Field name Description

Editor Name The name of the editor used to save the file
Editor Version The version of the editor used to save the file
Level Author The author of the file
Level Title A title for the level
Level Description A description
Time Created The time when the file was created
Time Last Modified The time of the last modification to the file
Original Filename The name of the original file name (levels.dat)
Original Level Number Optional. The level number it has when it was

first exported
Table 23: PLV Mandatory Fields

The content values may be empty. There is no need to keep an order within
the fields.

5.2 Allowed Date format

To make easy time parsing the time format must be very strict. There are only
two allowed formats: with seconds and without. With seconds the format is
“YYYY-MM-DD HH:II:SS” Without seconds the format is “YYYY-MM-DD
HH:II” Where YYYY is the year in 4 digits, MM is the month in numbers, MM
the months, DD the days, HH the hour, II the minute and SS the second in the
military time: HH is a number from 00 to 23.

27

If the month, day, hour or second have only one digit, the other digit must
be completed with 0.
i.e. 2002-11-26 22:16:39

6 SAV v1.0 Format Specifications

SAV v1.0 saves kid level, hit points and remaining time information in order to
restart the game from this position.

SAV files are 8 bytes length in the following format:

Offset Size Type Name Description

0 2 US i Remaining minutes
2 2 US ii Remaining ticks
4 2 US iii Current level
6 2 US iv Current hit points

Table 24: SAV blocks

Remaining minutes (i) Range values: 0 to 32766 for minutes 32767 to 65534
for NO TIME (but the time is stored) 65535 for game over

Remaining ticks (ii) Seconds are stored in ticks, a tick is 1

12
seconds. To get

the time in seconds you have to divide the integer “Remaining ticks” by 12.
Range values: 0.000 to 59.916 seconds (rounded by units of ≈ 83ms or

1

12
seconds) 0 to 719 ticks
Level (iii) Range values: 1 to 12 for normal levels 13 for 12bis 14 for princess

level 15 for potion level
Hit points (iv) Range values: 0 for an immediate death 1 to 65535 hit points

7 HOF v1.0 Format Specifications

HOF files are used to save the Hall of Fame information.
All HOF v1.0 files have a size of 176 bytes. The first 2 bytes belongs to the

record count. The format is US. The maximum number of records allowed is
6, so the second byte is always 0x00. Following those bytes there is an array
of records. This array has a full size of 29 bytes distributed according to the
following table.

Offset Size Type Name Description

0 25 text Player name
25 2 US 1 Remaining minutes
27 2 US 1 Remaining ticks

Table 25: HOF blocks

1similar to SAV format

28

In case there is no record, the 29 bytes spaces must be filled with zeros in
order to complete the whole file and give it the size of 2 + 29 ∗ 6 = 176.

8 Credits

This document
Writing . Enrique Calot
Corrections . Patrik Jakobsson

Hubai Tamas

Reverse Engineering
Indexes . Enrique Calot
Levels .Enrique Calot

Brendon James
MAC Levels . Dongsoo Lim
Images . Tammo Jan Dijkema
RLE Compression . Tammo Jan Dijkema
LZG Compression . Anke Balderer

Diego Essaya
Sounds .Christian Lundheim
Palettes and Speaker Sounds . David

PLV v1.0
Definition .Brendon James

Enrique Calot

9 License

Copyright c© 2004 – 2008 The Princed Project Team Permission is granted to

copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts.

Indexes

List of Tables

1 DAT file blocks . 5
2 Image headers . 6
3 Algorithm codes . 6
4 DAT 1.0 Palette blocks . 9

29

5 EGA and CGA palettes . 9
6 DAT 1.0 Level blocks . 10
7 POP1 Foretable codes . 12
8 Background modifiers by group 14
9 Stone modifiers on seed position 15
10 First 20 seed values of the second row separator 15
11 Default Guard colours . 16
12 Wave Specifications . 18
13 DAT file blocks . 18
14 DAT 1.0 Level blocks for Mac . 19
15 High data structures . 19
16 DAT 2.0 Master index . 20
17 Slave Index ID strings . 21
18 DAT 2.0 Level blocks . 22
19 POP2 Foretable Codes . 24
20 High data structures . 25
21 High data structures . 26
22 PLV blocks . 27
23 PLV Mandatory Fields . 27
24 SAV blocks . 28
25 HOF blocks . 28

List of Figures

1 Distribution of the sindow size. 8

30

